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The zeros of generalized Krawtchouk polynomials are studied. Some interlacing
theorems for the zeros are given. A new infinite family of integral zeros is given, and
it is conjectured that these comprise most of the non-trivial zeros. The integral zeros
for two families of g-Krawtchouk polynomials are classified.  © 1990 Academic Press,
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1. INTRODUCTION

Given a sequence of orthogonal polynomials p,(x), it is well known [5,
p. 27] that the zeros of p,(x) are real, simple, and lie inside the interval of
orthogonality. The Krawtchouk polynomials are a finite sequence of
orthogonal polynomials p,(x), 0 <n < N, whose interval of orthogonality is
[0, N]. In this paper we shall consider the zeros of Krawtchouk polyno-
mials, and in particular investigate the integral zeros.

The integrality of zeros for orthogonal polynomials has combinatorial
importance. If the polynomials are naturally related to an dssociation
scheme, then the location of the zeros is critical for combinatorial proper-
ties of the scheme. For example, if the scheme has a configuration called a
perfect e-code, then the polynomial of degree e has e integral zeros [7,
Chap. 5]. As another example, generalized Radon transforms can be
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defined on association schemes [9]. Such a transform is invertible if and
only if the relevant polynomial does not have integral zeros.

The most important association scheme is the Hamming scheme of
classical coding theory [3], [12], and its polynomials are the Krawtchouk
polynomials. Thus, the zeros of these polynomials and their g-analogs [8]
are important. We give some elementary interlacing properties of the zeros
in Section 3. A new infinite family of integral zeros is given in Theorem 4.6.
Numerical evidence supports Conjecture 4.7 that asymptotically these are
most of the non-trivial integral zeros. In Theorem 6.1 we show that a
family of g-Krawtchouk polynomials never has integral zeros. Finally, in
Section 6 we consider a second family of ¢g-Krawtchouk polynomials, and
classify its integral zeros.

For the (generalized) Krawtchouk polynomials, we need to introduce
the standard notation for (basic) hypergeometric series,

ay QG 0 Gpyrs X
F
r+1 r<b1 bz b >

r

— d (al)j(aZ)j"'(ar+l)jxj
Z 700, o oy 1 (L1)
where
(@);=ala+1)---(a+j—1), (1.2)
and
ay a, -+ 4y 4, X
r+1¢r(b1 bz L. br )
@ (a);(a); - (a, 1), %
= , 1.3
L), (a), - (5,), (0), (1)
where
(a);=(a;q);=(1~a)(l—aq)---(1—ag ). (1.4)

2. PRELIMINARIES

In this section we review the necessary facts about the Krawtchouk poly-
nomials. We refer the reader to [2] or [11] for more details.

We shall use notation for Krawtchouk polynomials which agrees with
the Hamming scheme H(N, ¢). The Krawtchouk polynomial k,(x, g, N) of
degree n in x is orthogonal on x=0, 1, ..., N with respect to the measure
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(M{g—1)". We may take ¢> 1, although ¢ is integral for H(N, g). This
defines the polynomials up to a normalization constant. They may also be
defined by the three-term recurrence relation
(n+1)k, 1(x)

=[(N=n)g=1)+n—gx]k,(x)—(g—1)(N=n+1)k, (x) (2.1)
for n=1,.,N—1, with the initial conditions ko(x}=1 and &,(x)=
—gx+ N{g—1). Their generating function is

N

Y ky(x, g N)2"=(1+(g—1)z2)" (1 —z)~ (2.2)

n=0

From (2.2), it is easy to see

ku(x, g, N)= ] (—IY(q—l)"‘f(N*%)()f\ (2.3)
j=0 n—j ]/’
and thus deduce
k,(0, g, N) = (f) (g—1)". (2.4)
Also
k(x,q, N)=k,(N-x, q/(g—1),N)(1 —q)" {2.5)

The Krawtchouk polynomials can also be expressed as a , F:

N —n —Xx
e m=(2)a-vn (70 T ) e

Because a ,F, is a symmetric function of the two numerator parameters, if
x =1 is integral we have the self-dual relation

(N ) (g~ 1) ko(i, g, V)

i
= (N) (=1 kin, g N), n,i=01,., N (2.7)
n

Clearly the three-term relation (2.1) and the self-dual relation (2.7) imply
the difference equation

(g—DWV—-x)k,(x+1,¢ N)—[{g—I)N—x)+x—gn]
xk{x,q, NV +xk,(x—1,¢q, N)=0. (2.8)
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In later sections we will need the following propositions. Proposition 2.1
follows from the generating function (2.2), and Proposition 2.2 follows
from parts (1) and (2) of Proposition 2.1.

ProposSITION 2.1. For 0<n<N,

(1) ky(x,q, N+1)=k,(x, g, N)+(g—1) k, _1(x, ¢, N),
) k(% g N+)=k,(x—1,¢N)—k,_1(x~1,¢ N),
(3) ku(x, g, N)~ky(x—1,¢,N) + (g— 1) k,_1(x, ¢, N) +k,_1(x—1,
4, N)=0,
(4) k,(x. ¢, N)—ky(x+1, 9, N)=gk,_,(x, ¢, N—1).
PROPOSITION 2.2. If k.(s, g, N)=0, where s is real, then

(1) k(s,q; N+1)=(qg— 1)k, (s, 4, N),
(2) kiials, g, N+ 1) =k, (s, ¢, N),
3) k(s+lL, g, N+1)=—k,_ (5,4, N).
Finally, we need a special proposition for the ¢ =2 case.
ProposITION 2.3.  We have
k(x,2, Ny—k{x+2,2, Ny=4k,_,(x,2, N—2).
Proof. From Proposition 2.1(4) we obtain the two equations
k(x,2, N)—k{x+1,2, N)=2k,_,(x,2, N—1)
kix+1,2, N)—k,(x+2,2, Ny=2k, _,(x+1,2, N-1).
Adding these two equations together yields
k(x,2, N) =k {x+2,2, N)
=27k, (6,2, N—1)+k,_(x+1,2, N—-1)]
=2[-kx+ 1,2, N-1)+k(x,2, N—-1)]
=2[2k, ,(x,2, N—2)],

where the second equality follows from Proposition 2.1(3) and the third
equality follows from Proposition 2.1(4). |}

3. INTERLACING OF THE ZEROS

In this section we concentrate on properties of the zeros which do
not involve integrality. Let x), <x),< .-- <x) 6 denote the zeros of
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k,.(x, g, N). Recall that 0<xV 1<x < N, there is some integer in any
open interval (x[,,x), . ) [16] and that the zeros of k ol%, g, N) and
k,_i(x, q, N) interlace [167. First we give an interlacing theorem which is
analogous to [10, Theorem 47 for Hahn polynomials.

THEOREM 3.1. The zeros of k,(x, q, N) and k,(x, q, N+ 1} interlace,

XN~< N+l

n,i

<xM.<xNiN, for i=1,.,n—L

Proof. This follows from the interlacing property for k,(x, ¢, N} and
k,_1(x, ¢, N) and Proposition 2.1(1). The details are similar to the proof of
Theorem 3.2. §

We now have two zeros, x) ;' and x)_,,, which lie in the interval

[x), x2,, 1] These zeros also interlace.

THEOREM 3.2. The zeros of k,_(x, ¢, N) and k,(x, g, N+ 1) interlace,

Nl o xN < xMHl for i=1,.,n—1

X i n—1,i <X iyt

Proof. We must show that x)';*' <x] |, so we first consider the /=1
case. Clearly the interlacing property for k,{x,¢q, N) and %,_,(x, q, N}

and Proposition 2.1(1) imply that x)'s#xY , . So assume that
N+1

x) o <x) ' Because the leading terms of k,(x, ¢, N} and k,(x, g, N+ 1}
have the same sign, k,(x, ¢, N) and k,(x, g, N+ 1) have opposite signs at
x}_, . This contradicts Proposition 2.2(2).

The proof continues by induction on i noting that k.(x, g, N} and
N+1

kx,q, N +1) have opposite signs on the interval (x), x)'). So the
assumption x,_, ;<x} ' would contradict Proposition 3 2(2). B

The next theorem shows that the interlacing in Theorem 3.1 is “close.”

THEOREM 3.3. For 1<i<n<N, x),—x}1'<1.

Proof. Since k,(x,) ;, g, N)=0, Proposition 2.2(1) implies
kn(x;]:,,ia g, N+ 1) = (Q‘“ 1) kn-l(xrlxh g, N)

and Proposition 2.2(2) implies

k x4+ 1L, g N+1)=—k, (x},, q N).

Thus, we have

k(x),q N+1)= —(g—1) b (x +1,9 N+1),

640/60/1-4
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and if g>1, then k,(x,¢q, N+1) must have a zero between x., and
N
xp+1L

If ¢ =2, we can say more about the distance between consecutive zeros.
Levit [10, Theorem 3] has a similar result for Hahn polynomials.

THEOREM 3.4. Let x| <Xx, be consecutive zeros of k,x,2, N) and sup-
pose r < N/2. Then

X1 + 2 < X5,
Proof. First we note that the difference equation (2.8) when g=2 is
N=2nk(x)=(N—x)k{x+ 1)+ xk,(x—1). (3.1)

Assume that x, is not an integer (the argument for x, an integer is
similar). Suppose there is only one integer s separating x, and x,, that is,
s—1<x;<s<x,<s+1. (Recall that the open interval between two
consecutive zeros of an orthogonal polynomial must contain at least one
spectral point.) Then we must have

sgn(k, (s — 1)) = sgn(k,(s + 1)) = —sga(k,(s)),

which contradicts (3.1) if x=s. This contradiction forces there to be at
least two integers in the interval (x,, x,), or x,>x, + L.
Now suppose x, < x;+2, and let x=x, 41 in (3.1). Then

(N=2r)k(x;+1)=(N—x;— D k(x,;+2),
which implies

sgn(k,(x, + 1)) =sgn(k,(x, +2)). (3.2)

Then (3.2) and x; + 1 <x, < x, + 2 imply that there must be another zero
of k,(x) between x, and x, + 2. But from the previous paragraph, we know
then that (x,, x, -+ 2) must contain at least two integers, thus giving us four
integers in the interval (x,,x;+2). This is clearly impossible; thus
x,>x;+2. |

The condition r < N/2 in Theorem 3.4 cannot be relaxed because the
zeros of ky(x,2,2N) are 1,3,...,2N—1.

There is a discrete form of Markoff's theorem [16, p. 1157 which states
the following. If the weight function w(x, q) is purely discrete, and the
logarithmic derivative w,(x, g)/w(x, ¢) is increasing, then the ith zero of the
corresponding orthogonal polynomials is an increasing function of ¢g. For
the Krawtchouk polynomials we then have the following theorem.
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THEOREM 3.5. Let x(q) be the ith zero of k,(x, g, N). Then xf’n(q) is an
increasing function of q, for g¢> 1.

4. INTEGRAL ZEROS

We next consider the number theoretic conditions which are necessary
for a Krawtchouk polynomial to have an integral zero. We also give a
non-trivial family of integral zeros in Theorem 4.6.

THEOREM 4.1. If k,(s, q, N) =0, 5 an integer, then q divides (*).

Proof. From Proposition 2.1(4), we have

kA0, g, N)— k1,4, N) =gk, .,(0, ¢4, N—1)
k.l,q,N)—k2, 4, N)=qk, (1,9, N—1)

kr(s~1’ q, N)_kr(S5 g, N)=qkr__1{S———1, q:Nﬁi)

The telescoping sum yields

s~1

k0.4, N)=q ¥ k,(s g, N— 1)

j=0

Recalling (2.4) yields the desired conclusion, since k,.{j,q N—1) is
integral. §

If ¢ is a prime number, the value of (¥) (mod g) is well known from
Lucas’ theorem [6, p. 657, and we have the following corollary.

COROLLARY 4.2. Letr,---r,and N, --- N, be the base q representations
of r and N, respectively. If q is a prime number and k (s, g, N)=0 for some
integer s, then for some i, r;> N,.

The divisibility condition in Theorem 4.1 can be improved if g =2.

THEOREM 4.3. " If 5 is a positive integer and k (s, 2, N)=0, then

k(s(mod2),2, N)=0  (mod2'*1),

for any integer t = 1.
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Proof. Proposition 2.3 immediately gives the result for r=1. It also
shows

k,(x,2, N)—k,(x+4,2, N)
=4[k, _(x,2, N=2)+k, _(x+2,2, N=-2)]. (4.1)

If x is integral, then Proposition 2.3 implies that k,_,(x, 2, N—2) and
k,_i(x+2,2, N—2) are the same modulo four, so the left side of (4.1)=0
(mod 8). Again a telescoping sum shows that this is the r=2 case. The
general case follows from k,(x, 2, N)—k,(x+2',2, N) being the sum of
2! terms, all of which are the same modulo four. |

We next consider the integral zeros of &,(x, 2, N). By symmetry in # and
x we can assume that # < x. From (2.5), we can clearly take x < N/2. There
is another set of zeros to which we will refer as trivial. For # odd, (2.5) also
implies that x = N/2 is an integral zero for N even.

For polynomials of small degree n, the non-trivial integral zeros
(n, x, N), 1 <n<x< NJ2, can be found explicitly (see [9]).

PropoSITION 4.4, The integral zeros for degrees 1,2, and 3 are

(1) (1, k 2k), k=1,
2) (2, ktk—1)2, k%), k=3,
() 3, k(k+1)/2, 3k + 3k +3/2+ (k+ 1/2)), k= 2.

Strictly speaking, (1) consists of trivial zeros. Note that the pentagonal
numbers appear as the integral zeros in (3).

Even though the zeros can be given for degree four, it is a difficult
number theoretic problem to classify when these zeros are integral.
Graham and Diaconis [9] give nontrivial values of (4,7, 17), (4, 10, 17),
(4, 30, 66), (4,36,66), (4,715, 1521), (4,806,1521), (4,7476,15043),
(4, 7567, 15043), along with the trivial values (4, 1, 8), (4, 3, 8), (4, 5, 8),
(4,7,8). They conjecture that this is the complete list for degree four.
Laurent Habsieger has shown that any other possible value of N must have
at least 1000 digits. We can use Theorem 4.3 to restrict the possible values
of N. The following corollaty takes ¢=2.

COROLLARY 4.5. Suppose k4(x, 2, N)=0, for some integer x.
(1) If x=0 (mod 4), then N=0, 1, 2, or 3 (mod 32).
(2) If x=1 (mod4), then N=1, 2, 3, or 8 (mod 32).
(3) If x=2 (mod4), then N=0, 2, 3, or 17 (mod 32).
(4) If x=3 (mod4), then N=2, 3,8, or 17 (mod 32).
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Proof.  Use the explicit form of k,(Z, 2, N)=0, 0<i< 3, as a polynomial
of degree i in N and Theorem 4.3. |

Using MACSYMA we found all of the non-trivial integral zeros for g =2
and N<700. The data suggested the following theorem, for an infinite
family of non-trivial zeros.

THEOREM 4.6. For any integer h>= 1,
kZh(4h - 1, 2, Sh + 1) = 0

Proof. This theorem can be proved using the theory of hypergeometric
series in [17]. Instead we give a simple proof from the g =1 version of (6.6)
below. Let N=2n+1 in (6.6), and assume that x is even. If 1=3 the two
allowed values of r in (6.6) are r=x/2 and r=x/2 — 1. If these two terms
sum te zero, we find that x=(n+1)2=2h so that n=4hA—1 and
N=8n+1. §

The following table lists all non-trivial integral zeros for g=2, N <700,
and 1<n<x<N/2, which do not follow from Proposition44 or
Theorem 4.6.

(5,14,36)  (23,31,67),  (31,103,214)  (34,254,514)
(5,22,67)  (14,47,98)  (5,133,289) {84,286, 576)
(5,28,67)  (19,62,132) (6, 155, 345)

(6,31,67)  (61,86,177) (44, 230, 465)

Note that many of these zeros have N =2n+¢, for small values of 7. In
fact, with Laurent Habsieger we have found five more infinite families of
zeros, for 1=4, 5,6, and 8. These families contain all of the zeros in the
table, except for (5, 22, 67), (5, 28, 67), {5, 133, 289), and (6, 155, 345). The
details will appear elsewhere. Nevertheless, these zeros are more sparse
than those in Theorem 4.6, and we make the following conjecture.

Conjecture 4.7. The number of non-trivial integral zeros of
Krawtchouk polynomials k,(x, 2, M) for M < N is asymptotic to N/§.

One may also look for families of integral zeros of k,(x, g, N), g= 3. In
this case we may assume 1<»n<<min(x, N—x). Again using MACSYMA
this was done for ¢ <20 and N < 100.

PrROPOSITION 4.8. The integral zeros (n,x, N} of k,(x, q, N) for n=3,
N<100, and 3<g<20 are
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(1) (3, 14,28), (5, 16, 30), (4, 35, 57), (4, 65,93), for g =3,
(2) (3,55, 66), (5, 55, 68), for g=4,

(3) (4, 66, 80), for g=5, and

(4) (4, 52, 66), for g=6.

5. SUMMATION THEOREMS

In this section we give a few summation theorems for Krawtchouk
polynomials which follow from the recurrence relations in Section 2.

From Proposition 2.1(4) we can deduce the following identity for the
Krawtchouk polynomials:

N 1 .
S k(i g, N)=5[(q—1)'+1+(—1)’1( 5.1)

j=0

N+1
r+1)/

This can be generalized for ¢ =2 by using Lemma 4.3 to find if N is even
and r odd,

N/2 N/2
Y k(2,2 N)=0=Y k(2—1,2,N), (52)
=0 Jj=1

if N and r are both even,

N2 N+2 N+1
k(2,2 =
EO A2, 2. N) 2(N—r+1)<r+1)
(5.3)
N2 N-—-2r N+1
k(2j—1,2, N)=—————
El A% ) 2(N—r+1)<r+1>
if N and r are both odd,
(N—1)/2 N+1 (N+1)/2
Y k2n=3("T)=-TT k-n2m s
j=0 r j=1
and if N is odd and r is even,
(N—1)2 1 N+1 (N+1)2
j=0 =1
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From (5.1} and the product formula for Krawtchouk polynomials it is
easy to see that

N

Y. k,(k, 2, Nyk(k, 2, N)

N2 N—-2m Im N+1 .
=X <r+s)/2 m><(r—s)/2 m>(2m+1) (56)

The binomial coefficients in (5.6) which have non-integral arguments are
defined to be zero.

6. g-ANALOGS

There are two families of orthogonal polynomials which have been called
g-Krawtchouk polynomials. In this section we shall consider the zeros of
these polynomials, and compare the results to Section 4.

The first family has been called the affine g-Krawtchouk polynomials,
because it arises from association schemes with natural translations
[14, 15]

KA (x, a, N, ) ="v,3¢> (‘1 ;I_N ?1 ¢ q), for 0<n<N, (6.1)

where v, is non-zero. Clearly (6.1) implies that K2%(x, a, N, ¢) is a polyno-
mial in ¢~ of degree n. The three cases for which these polynomials are
realized from association schemes all have ¢ equal to a prime power. They
are

(A1) K2%x,q ™ N,q), M integral and N< M,

(A2) KA, qzu““/“*’ LN/2], 4%), and

(A3) K}M(x, —(~q)"", N, —q).

Note that the effect of the greatest integer functions in (A2} is just to put
~V and ¢' " as denominator parameters in the ;¢,. Note also that if v,
is defined appropriately,

lim K2%(x, a, N, q) = k,(x, 1/a, N).
g1

However, this limit does not apply to the three cases above, because the
value of a depends upon g.
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The other family of g-Krawtchouk polynomials is a g-analog of the
binary Krawtchouk polynomials (the ¢ =2 case in Section 2). It is

K. (x, ¢, N, q)

n—-N—c.

=vn3¢2<q ‘(]]\N "QO b q), for 0<n<N, (62)

where v, is non-zero. These polynomials arise from six association schemes
[13], giving five sets of polynomials:

(B1) K,(x,0,N,q),

(B2) K,(x,1,N,q),

(B3) K,(x,2,N,q),

(B4) K,(x,1/2,N,¢")

(BS) K,(x,3/2, N, ¢%).
This time

lim K, (x, c, N, ¢)=k,(x,2, N)
q—1

if v, is defined appropriately. There are also group theoretic reasons [14]
for considering these polynomials as the correct g-analogs of k,(x, 2, N).

First we consider the affine g-Krawtchouk polynomials (Al)-(A3).
Surprisingly, the next theorem states that these polynomials are never zero
at integral values of x. It had previously been shown [4] that at least one
zero must be non-integral.

THEOREM 6.1. Let p,(x) be one of the affine q-Krawtchouk polynomials
(A1)—~(A3), where q is a prime power. Then
(1) pA)#0 for i,n=0,1, .., N, for (1) and (3),
(2) pui)#0 for i,n=0,1,..,  N/2 ], for (2).
Proof. We shall prove case (2), and leave the other two cases to the
reader. By symmetry we can assume that i>n>1 and p,(i) =0. Multiply

the definition (6.1) of p,(i) by (¢7":¢%),(a V" ¢%), (g% %), ™™ to
obtain

Y @sa a7 2)@" Y97, @ Y97,
j=0

x(q2j+2; qz)n_jq(N—2n)j+(N—2i)j+2n2—n+j= Z Cj(q)=0. (6.3)
j=0
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For each j, ¢;(¢) is a polynomial in ¢ with integer coefficients. The lowest
power of ¢ that appears in ¢;(¢) is (N—2n) j+ (N —2i) j+2n*—n+ j and
the highest power of ¢ that appears is 2Nn+n{n+1)—j>+j. Since
i, j<|.N/2 |, (6.3) implics that the lowest power of g appearing is g2 ",
Thus, if we divide both sides by ¢ ", we obtain 0=1 (mod ¢). This
contradiction implies that p,(i)#0 for izn. |

Next we turn to the g-Krawtchouk polynomials K,(x, ¢, N, g). These
polynomials are not symmetric in #» and x. We shall need the generating
function [13]

Z Kn(xa c, N’ q) ZXZ(Z)n(*qCZ)me (64}

x=0

which implies the following g-analog of (2.3) via the g-binomial theorem
[1]:
il ) N“’n (x) (c— j}x— )
K, (x, e, N, q)=) (=1Y| S| g Tl (6.5)
. j=o0 JigLX—J 14
We first give the g-analog of the trivial zeros of x odd for ky(x, 2, 2N).
PROPOSITION 6.2. If x is an odd integer satisfying 1 <x<2N, then
KN(x! Os 2N7 q) :0
Proof. This is clear from (6.4) and (z)y(—z)y=1(z%q")y. §
Finally, the argument of Theorem 6.1 implies that these polynomials are

otherwise non-zero.

THEOREM 6.3. If q is a prime power, the following values of
g-Krawichouk polynomials are non-zero:
(1) K,(;,0,N,q) for 0<i,n<N, 2n#N,
(2) K., 1, N, q) for 0<i, n<N,
(3} K.(i,2,N,q)for 0<i, n<N,
(4) K.(i,1/2, N, ¢*) for 0<i, n<N,
(5) K,(i 3/2,N,q%) for 0<i, n<N.
Proof. First we take ¢ =0 and assume that 2n < N, so that the generat-

ing function is (z% ¢°),{(—24"; q)x_.,. Then the g-binomial theorem [17]
implies

Kx0M =3 |"|

r 7

r N——Zn x72r) n(x—2r r
q2(2)[x_2rj! q( 2 J+n( 2)(__1)
q

= ¢{q), (6.6)
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where c,(q) is a polynomial in ¢ with integral coefficients. The degree of the
lowest-degree term in c,(q) is

L(r)=nx+x%*2 —x/2+3r* = 2rx — 2rn.

As a function of r, L(r) has its minimum value at r = (x + n)/3. Thus there
is a unique term in (6.6) containing the smallest power of ¢, and as in
Theorem 6.1, this implies K,(x, 0, N, g¢) #0. The 2n> N case can be done
similarly.

The proof for ¢=1 (¢=2) is similar, this time two (three) terms
naturally occur in the sum that corresponds to (6.6). Nevertheless, again
there is a unique term with the term of minimum degree.

For ¢ =1 or ¢ =2, we can use (6.5), for which

L(r)=x*2—x/2+r* —rx—rc+cx.

The minimum value for L(r) occurs at r=(x+¢c)/2. If c=4 or ¢c=3, this
insures a unique term in (6.5) of minimum degree. Note that this argument
also does the ¢ =0 case with x even, but not for x odd. |
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